Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth
نویسندگان
چکیده
We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle’s theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.
منابع مشابه
Fixed Parameter Tractability of Crossing Minimization of Almost-Trees
We investigate exact crossing minimization for graphs that differ from trees by a small number of additional edges, for several variants of the crossing minimization problem. In particular, we provide fixed parameter tractable algorithms for the 1-page book crossing number, the 2-page book crossing number, and the minimum number of crossed edges in 1-page and 2-page book drawings.
متن کاملOne- and two-page crossing numbers for some types of graphs
The simplest graph drawing method is that of putting the vertices of a graph on a line (spine) and drawing the edges as half-circles on k half planes (pages). Such drawings are called k-page book drawings and the minimal number of edge crossings in such a drawing is called the k-page crossing number. In a one-page book drawing, all edges are placed on one side of the spine, and in a two-page bo...
متن کاملar X iv : c s / 04 05 11 2 v 1 [ cs . D M ] 3 1 M ay 2 00 4 Really Straight Graph Drawings ∗
We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing ...
متن کاملar X iv : c s . D M / 0 40 51 12 v 1 3 1 M ay 2 00 4 Really Straight Graph Drawings ∗
We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing ...
متن کاملAn Improved Neural Network Model for the 2-page Crossing Number Problem
The simplest graph drawing method is that of putting the vertices of a graph on a line and drawing the edges as half-circles either above or below the line. Such drawings are called 2-page book drawings. The smallest number of crossings over all 2-page drawings of a graph G is called the 2-page crossing number of G. Cimikowski and Shope have solved the 2-page crossing number problem for an n-ve...
متن کامل